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TURBULENT FREE-CONVECTIVE JETS: NUMERICAL 
SOLUTION OF MODEL EQUATIONS OF TRANSFER 

V. N. Korovkin and A. P. Andrievskii UDC 536.25 

Numerical  solutions o f  self-similar equations f o r  plane and axisymmetric  f lee-convect ive  je ts  are ob- 
tained using different semiempirical  turbulence models. The results obtained are compared to the ex- 

perimental  data o f  other authors. 

Introduction. Turbulent free-convective flows induced by buoyancy sources are the subject matter of 
a great number of recent publications in the technical literature, which is governed to a considerable degree by 
their direct relation to diverse modern problems of science and technology. Knowledge of the special features 
and regularities of such problems is needed, for instance, to solve problems dealing with air conditioning, 
evaluation of the degree of environmental contamination under the action of anthropogenic factors, fire prob- 
lems, a search for methods of efficient reburning of environmentally hazardous gases, and so on. From the 
fundamental viewpoint, the problem of mathematical modeling of such jet flows is not conclusively resolved. 
The nonlinear character of interaction of scalar and vector fields makes a description of the sought charac- 
teristics more complicated by an order of magnitude and allows this phenomenon in the heat-transfer theory to 
be surely assigned to the most complicated ones. The latter was the reason for the fact that, despite the sim- 
plicity of differential equations, which describe the behavior of free-convective flows within the framework of 
various turbulent models, construction of solutions of these equations turned out to be a difficult matter. There- 
fore, the statement of problems was subjected to further simplifications that entailed loss of quantitative infor- 
mation. Naturally, such approaches did not allow a sufficiently accurate determination of the advantages and 
drawbacks of a particular mathematical problem. The situation becomes more complicated due to the fact that 
the presently known experimental data on free-convective jets [1-10] have a substantial scatter not only in the 
pulsation characteristics of the flow but also in the averaged parameters. Under these circumstances, investiga- 
tions concerned with evaluation of the possibilities of different mathematical turbulence models to describe and 
predict the development of free-convective jets are, undoubtedly, of interest in our opinion. 

Below, we provide results of a complex numerical solution of a class of self-similar problems on plane 
and axisymmetric free-convective jet flows obtained using two different semiempirical turbulence models. 

Basic Equations. An initial system of partial differential equations for the averaged parameters of a 
vertical free-convective jet in the approximation of the theory of a turbulent boundary layer is of the form 

~x (yJu) + ~y  (yJv) = O, 

bu bu 1 b 
u - -  + v - -  = - -= - -  (7 j (u'v')) + g ~ A T ,  

bx ~.V y /  by 

bT bT 1 b 
u - -  + v - Cv j (v 'T ' ) ) .  

bx by yJ by 

To close equalities (1), in the present work use is made of the Boussinesq hypothesis 
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3t t  V t ~ T  
- ( u ' v ' )  = V t ~-'~V ' - -  ( v ' Z ' )  = 

. a t  ~ y  

and of additional semiempirical relations for the coefficient of turbulent viscosity vt: 

V t = it.oh (Uma x - Umin) ; 

(2) 

(3) 

y 

V t = levi uvJdv. (4) 

Next, from the conditions of symmetry and locality of the phenomenon, the boundary conditions follow 
for the velocity and temperature fields: 

~u OT 
y = O :  V-Oy ~y 0 

y ~ :  y ~ O ,  T ~ T ~ .  
(5) 

The statement of the problem is completed with the representation of the integral law of conservation 
of the heat flux 

Qo = 2 (~Z) i ~ pCp uATyJdy = const, 

o 

(6) 

which stems from the third equation of system (1). 
Plane Jet (j = 0). Analyzing the development of a jet flow over the main (self-similar) section of flow, 

we assume that 

f'7) 

A T = t  oCt, ~g~Q° l/3 v r ~ _ 1 %  h ( q )  x - t  , rl  - " 

Then for finding the unknown functions f(rl) and h(q) we obtain the following system of interrelated ordinary 
differential equations, where differentiation with respect to a new variable I"1 is denoted by a prime: 

f"+Jf"+h=O" l h"+fh'+f'h=O; 
13 t 

p r  t • 

f (O)=O,  f ( 0 ) = 0 ,  f ( ~ ) = 0 ,  h ( 0 ) = 0 ,  h ( ~ ) = O ;  

1 f f" h drl = - ~ . 
o 

(8) 

Note that problem (8) allows integration by quadratures only for two particular cases [11]: 
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2 " 1 .)/5 
( s t=~ :  f '=30~2(1-tanh2(~rl) ,  h = 6 ~  4(1 -tanh2(~rl),  0~= [-~-~-j ; 

x / 

(s t = 2 : f" = 2c~ 2 (1 - tanh 2 ~rl),  h = 4o~ 4 (1 - tanh 2 o~11) 2 ct = -~ 

According to formula (3) (the second Prandtl hypothesis), the coefficient of turbulent viscosity is vt = 
const at x = const. The latter, naturally, much idealizes the physics of the process investigated. Therefore, ex- 
pression (4), suggested for the first time in [12, 13], is more perfect; its use in calculations leads to the fact 
that the behavior of the parameter 

= [g[JQo~] ql/3 f. (rl) (10) 
V t X , 

t oc,, ) n 
and of other characteristics, i.e., u, v, and AT, is found from solving a two-point boundary-value problem of 
the form 

f"  +ff"+h=O" -~t h" 

f(O)=O, f"(O)=O, f ' (~)=O,  h (0)=0, h(oo)=O; 

1 
I f'hdrl = 2" 
0 

(11) 

At (st = 2. system (I l) has the analytical solution [14] 

f ' = o t e x p  - ~ - ,  h=o~2exp(-r l2) ,  ot=/-2--~ ) . (12) 

Next, using the scales from [15] for normalization of the results obtained, we can represent fornmlas 
(7) in dimensionless form: 

f '  (0) c.l/3 h (0) F_l/3 _1 = ATF(I/3x_I__. U c = ~ r o  =A.F~/3, A T c = ~  o "" 

YO.5. = N~rlo.5. x , Yo.sar = N~rlo.sATX, 
(13) 

(U'v')m (VT)m 
2 --  K(I ( U V ) m  ' - -  = 1£0 ( v T ) m  " 

Uc ucATc 

Axisymmetrie Jet (j = 1). The scheme of calculation of the main section of a vertical axisymmetric 
free-convective flow is identical to that of a plane jet. A solution of system (1)-(3), (5), and (6) can be repre- 
sented in the form 

g~Qo ~/3 Ig~Qo41,/3 
u = 4/tpCp'--'~) f '  ('rl) x - 1 / 3 '  vt  = - -  x2/3' 4rcpCp ) 

_(.  Q~ "]2/3 2 (14) 

AT-  4rtpCp,~g~ rm) h(rl)x -5/3 , rl-  4N~x 2 . 
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Then we arrive at the necessity of integration of two nonlinear ordinary differential equations: 

( r l f )  + ~ f f  +'~./' + h = O ;  - - ( r i f t ) ' +  fh"  
(3r t 

f(O) = O, lim X~-q .f"= 07 f '  (oo) = 0 ; 
rl--~O 

lim ~ h ' = 0 ,  h ( o o ) = 0 ;  I f ' h d q = l .  
rl--)O 0 

(15) 

At ~t = 1.1 and ot = 2, problem (15) is solved analytically in [11]: 

2 
• 18 ot h -  288 o~ 

ot 1.1 : f  11 ( l + a l l )  2'  121 ( l + a q ) 3  
11 14 - 

36 

" 25 4~ p 

c t 2 : f 6 c~ , h 48 
5 (1 +O~q)  2 25  (1 +(XI] )  4 '  2 4  

(16) 

The use of hypothesis (4) in modeling of the problem under investigation allows us to seek a solution 
among functions of the form 

~8/I:pCpN) ) f (1"1) x , v t = - -  x 2/3 , 
L .pc  ) n 

_. (17) 
1 Q(} ~/3 v 

A T = -  ~ I h (r l)  x - 5 / 3 ,  r I -  
2 •pCp ~/g13 N, ) 4Nrr- 

By substituting expressions (17) into the initial system of equations, we arrive at 

" , 5 ,, 1 ,'- 1 " '  " 5 f ' h = O ;  Of) +gff  +~.f +h=O; --(fh) +5fl7 + 
~t  

f (O) = O, lim ~-q .f" = O, f '  (oo) = 0 ; 
TI--)O 

lim ~-~ h ' = 0 ,  h ( o o ) = 0 ;  ~ f ' h c l q  
rl---~) 0 

= 1 .  

(18) 

Problem (18) is considered for the first time in [12], where an analytical solution is obtained for par- 
ticular values of the turbulent Prandtl number: 

( - - ~ /  , 1 2 exp ( - - ~ ) ,  (3) 1/3 = 0.6 : f" = ~ exp h = -~ c~ = ( l  t 

l /3  

( i t = 2 : . f ' = a e x p ( - 5 q ) ,  h = 2 ~ 2 e x p ( - 5 r l ) ,  a = ( - ~ )  . 

With allowance for the scales from [15], formulas (14) can be rewritten in the form 

(19) 
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T A B L E  1. Values o f  the Parameters  f ' (0 ) ,  h(0), qo.s,, rio.sat, (UV)m, and (vT) m for a Plane Free-Convect ive  Jet 

f ' (0)  
o t  

(8) (11) 

0.4 0.8375 - 

0.5 0.8395 0.8766 

0.6 0.8408 0.8773 

2/3 0.8414 0.8777 

0.7 0.8417 0.8779 

0.7187 - 0.8780 

0.8 0.8424 0.8784 

0.9 0.8430 0.8789 

1.0 0.8436 0.8794 

h(0) 

(8) (11) 
0.3914 

0.4247 0.4839 

0.4541 0.5134 

0.4721 0.5315 

0.4807 0.5402 

- 0.5450 

0.5052 0.5648 

0.5279 0.5878 

0.5494 0.6093 

n0,5u 

(8) (11) 

1.859 - 

1.769 1.482 

1.701 1,434 

1.664 1.407 

1,647 1.395 

- 1,389 

1.603 1,363 

1.566 1.336 

1,534 1.313 

rl0.5aT (UV)m 

(8) (11) (8) (11) 

2.198 - 0.4306 - 

1.945 1.665 0.4539 0.4201 

1.761 1.520 0.4733 0.4356 

1.664 1.442 0.4846 0.4443 

1.621 1.407 0.4897 0.4483 

- 1.389 - 0.4504 

1.509 1.316 0.5038 0.4595 

1.417 1.241 0.5161 0.4695 

1.340 1.778 0.5269 0.4778 

T A B L E  2. Values of  the Pa ramete r s f ' (0 ) ,  h(0), qo.5,,, qo.5ar, (UV)m, and (vT) m for an Axisymmet r i c  

Jet 

(vT)m 

(8) (11) 

0.9092 - 

0.8250 0.7254 

0.7614 0.6731 

0.7267 0.6441 

0.7111 0.6306 

- 0.6240 

0.6699 0.5961 

0.6353 0.5670 

0.6057 0.5410 

Free-Convect ive  

f ' (0)  
o t  

(151 (18) 

0.4 1.4711 1,4088 

0.4785 1.5062 

0.5 1.5147 1.4272 

0.6 1.5492 1.4422 

0.7 1.5776 1.4549 

0.8 1.6018 1.4662 

0.9 1.6229 1.4764 

1.0 1.6417 1.4857 

1.1 1.6586 - 

h(O) 
(151 (181 

0.9889 0.5313 

1.1631 -- 

1.2101 0.6147 

1.4256 0.6934 

1.6360 0.7688 

1.8424 0.8414 

2.0455 0.9119 

2.2461 0.9805 

2.4445 

nO.5u 

(151 (181 

0.777 1.643 

0.693 

0.674 1.497 

0.599 1.387 

0.543 1.299 

0.499 1.227 

0.463 1.667 

0.434 1.116 

0.408 

q(J.5AT 

(15) (18) 

0.866 2.080 

0.693 

0.657 1.664 

0.526 1.387 

0.437 1.189 

0.373 1.040 

0.324 0.925 

0.286 0.832 

0.256 

(~V) m 

(15) (181 

0.2524 0.2268 

0.2619 - 

0.2644 0.2386 

0.2749 0.2486 

0.2843 0.2575 

0.2928 0.2652 

0.3004 0.2721 

0.3074 0.2783 

0.3139 - 

f '  (0) L..-I/3 -1/3 -1/3 11 (0) F~1/3 -5/3 
u c = ~ r o x = A ,~ (71 /3  x ATc= ~/256~?~ , ~ x 

~/ 16N~ 

(U'P')m = ~ (UV)m (v'T')m = ~ (vT)m 
2 ' " 

Uc u c A T  c 

Similarly,  for equalit ies (17) we have 

f '  (0) F - 1 / 3  -1/3 = AuFol/3 x-l~3 
Uc = ~ 0 X 

h (0) ~.1/3 -5/3 . r l / 3  -5/3 
ATc  = ~ r 0 x = ATt+ 0 X , 

YO.5. = 2 ~ ~'-~o.5. x ,  Yo.sar = 2 ~ ~/rio.sAt x ,  

(u'V')m = 2 ~ (UV)m @'T')m = 2~-7~j (vr )  m 
Uc UcAT c 

= ATF~)/3y. , 

(vT)m 

(15) (18) 

0.6030 0.4857 

0.5528 

0.5411 0.4456 

0.4949 0.4145 

0.4588 0.3895 

0.4294 0.3686 

0.4050 0.3510 

0.3842 0.3357 

0.3662 

(20) 

(21) 
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TABLE 3. Structure of Turbulent Free-Convective Jets 

Our data, problem (8) 
Our data, problem (1 1) 

[21 

Dur data, problem (15) 
Our data, problem (1 8) 

WI - 

Plane 

Same 

Same 

Same 

Same 

Plane 
Same 
Same 

Circular 

Same 

Same 

Same 

Same 

Same 

Same 

Circular 
Same 
Same 

0.6 
0.6 
var 

- 

- 

- 

0.95 
- 

- 

0.7-1.0 

0.95 
0.85 
var - 

~xperimental data 
1.80 2.60 

1.66 2.38 

2.05 3.20 
- - 

2.13 2.56 

Calculation 
2.0 2.58 
1.99 2.65 
2.0 3 .o 

kperimental data 
4.7 11.0 
- -A[c[A-A 

3.4 9.1 
- - 

3.4 9.4 
- 11.10 

3.4 9.4 
Calculation 

Calculation Results and Their Discussion. The above relations (13), (20), and (21) in combination 
with the analytical expressions for the functions f ' ,  h and their derivatives allow determination of all the main 
parameters of a vertical free-convective jet motion of a liquid over the basic (self-similar) section. But the 
domain of application of solutions (9), (12), (16). and (19) is limited by the corresponding values of o,, at 
which the equations allow integration by quadratures. In this connection, Martynenko and others [ I  4, 16-1 91 
have made an attempt to extend the domain of application of the analytical relations. However, the sought 
functions constructed within the framework of different approximate schemes and satisfying the general form 
of the analytical formulas were not sufficiently accurate, as revealed by analysis [20]. 

The four nonlinear two-point boundary-value problems were numerically solved by the Heming method 
by reducing (8), (1 I), (15), and (18) to the corresponding Cauchy problems. In calculations, the results of 
which are given in Tables 1 and 2, the turbulent Prandtl number ranged from 0.4 to 1.1, which is conditioned 
by the experimental data of [9, 101. As follows from the tables, in the investigated o, range the characteristics 
of the jet flow undergo a monotonic change: f r (0),  h(O), and (uv), increase, while q0.5~. q ( 1 . 5 ~ ~ ~  and (vT), 
decrease. However, despite the general similarity, the dependences display different features: the use of formula 
(4) instead of (3) leads to a slower increase (decrease) in the main parameters. Noteworthy is the fact that o, 
has a pronounced effect on the thermal characteristics of the free-convective flow, while changes in the hydro- 
dynamic quantities are manifested to a lesser degree. An important distinctive feature of problems (8) and (1 1) 
((15) and (18)) is that the similarity of the profiles of the mean components of the vertical velocity and the 
excess temperature takes place at different numbers o,, which are 0.667 and 0.719 for a plane jet and 0.479 
and 0.600 for an axisymmetric one. Hence, the use of more exact equations in the mathematical models to 
describe the sought characteristics makes the threshold number o;* separating the conditions with > ?().5,, 

from those with y(,,sa~< y(,.~,,, shift to higher Prandtl numbers. 



We would also like to note the substantial difference of the semiempirical models for calculating free- 
convective flows from the similar models for forced flows: a characteristic feature of the results obtained 
within the framework of Eqs. (1) and (2) is the sensitivity to a change in the closing relations, especially for 
an axisymmetric jet. Next, the study of the adequacy and implementation of the models discussed has shown 
(Table 3) that theory adequately predicts special features and regularities of the free-convective liquid motion 
over the basic (self-similar) section with a slightly better quantitative correspondence for the axisymmetric jet. 
Disagreement with experiment for the peak values of (uv)/u~ and (v'74)/ucATc has also been noted in calcu- 
lations of vertical free-convective jets by more complicated models using the differential equations for 
Reynolds stresses and heat fluxes [21]. 

Thus, the results of a mathematical representation of free-convective jets in the context of models (1)- 
(6) rather satisfactorily agree with experiment [1-10] and are not worse than those obtained using substantially 
more complicated models [21]. 

N O T A T I O N  

u, v, vertical and horizontal components of the averaged velocity; T, averaged temperature; Cp, specific 
heat at constant pressure; vt, kinematic coefficient of turbulent viscosity; (Yt, turbulent Prandtl number; p, den- 
sity; ~, coefficient of volumetric expansion; g, free-fall acceleration; Q0, flux of excess heat content; :t, y, co- 
ordinates; u', v', components of the pulsation velocity; T', temperature pulsation; r I, self-similar variable; AT = 
T -  T=, excess temperature; -{u'v'), turbulent shear stress; Y0.5, jet halfwidth; b, width of the mixing layer; ~ ,  
experimental constant; F0, Froude number. Subscripts: oo, surrounding liquid; m, maximum value; c, axial line 
of the jet. 
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